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Abstract— Automated control of blood glucose in patients with 

type 1 diabetes has not yet been fully implemented.  The aim of 

this study was to design and clinically evaluate a system that 

integrates a control algorithm with off-the-shelf subcutaneous 

sensors and pumps to automate the delivery of the hormones 

glucagon and insulin in response to continuous glucose sensor 

measurements.  The automated component of the system runs an 

adaptive proportional derivative control algorithm which 

determines hormone delivery rates based on the sensed glucose 

measurements and the meal announcements by the patient.  We 

provide details about the system design and the control 

algorithm, which incorporates both a fading memory 

proportional derivative controller (FMPD) and an adaptive 

system for estimating changing sensitivity to insulin based on a 

glucoregulatory model of insulin action.  For an inpatient study 

carried out in eight subjects using Dexcom SEVEN PLUS 

sensors, pre-study HbA1c averaged 7.6, which translates to an 

estimated average glucose of 171 mg/dL. In contrast, during use 

of the automated system, after initial stabilization, glucose 

averaged 145 mg/dL and subjects were kept within the 

euglycemic range (between 70 and 180 mg/dL) for 73.1% of the 

time, indicating improved glycemic control.  A further study on 

five additional subjects in which we used a newer and more 

reliable glucose sensor (Dexcom G4 PLATINUM) and made 

improvements to the insulin and glucagon pump communication 

system resulted in elimination of hypoglycemic events.  For this 

G4 study, the system was able to maintain subjects’ glucose levels 

within the near-euglycemic range for 71.6% of the study duration 

and the mean venous glucose level was 151 mg/dL. 

 
Index Terms— glucose sensor, artificial pancreas, bihormonal 

insulin delivery, glucagon delivery  

I. INTRODUCTION 

here has been significant progress made in recent years in 

developing technology for the automated delivery of 

hormones to people with type 1 diabetes.  Ever since the 
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concept of automated control of glucose was first proposed [1, 

2] there has been a steady evolution of methods for 

implementing the artificial pancreas.  An overview of this 

progress is provided in [3, 4] which begins by describing how 

the artificial pancreas resulted from the simultaneous 

development of continuous glucose monitoring techniques [5-

7] along with automated insulin delivery technologies.   

The Biostator [8, 9]. based on the work of Albisser et al. 

[1,2] was the first commercial implementation of the artificial 

pancreas controller.  The Biostator used an average blood 

glucose reading taken continuously and the delivery of insulin 

was based on this average glucose reading along with the 

change in blood glucose over a prior five-minute window.  

The Biostator delivered insulin intravenously and blood was 

withdrawn intravenously for external glucose measurement.  

There have been many challenges to intravenous insulin 

delivery and glucose measurement and most current 

approaches to closed loop glucose control, including the one 

described in this paper, use the subcutaneous route.  

A proportional controller [1] was the first algorithm used to 

control the delivery of insulin based on glucose sensor 

readings.  This proportional controller used the difference 

between a target glucose level and the sensed glucose 

measurement to calculate the insulin delivery amount. A 

derivative component was introduced [2] which incorporated 

the change in measured glucose over time to calculate the 

insulin infusion amount.  Steil and others have incorporated an 

integral component in the controller that utilizes a history of 

proportional values to improve the performance of 

maintaining glucose homeostasis [10-12]. These three 

components (proportional, integrative, and derivative) form 

the basis of many PID-based artificial pancreas delivery 

controllers. The one described in this paper also contains 

elements of these three components. 

An alternative to PID controllers is model predictive control 

(MPC).  MPC has been applied towards automated blood 

glucose control as reported by numerous groups using 

simulated data [13-16] and also within clinical studies [17-19]. 

MPC based approaches to glucose control use a mathematical 

model of the body’s metabolism of insulin and glucose to 

project future glucose levels of the patient.  The control 

variable (insulin delivery) is then adjusted by solving an 

optimization problem that is designed to achieve euglycemia.  

The design of the cost equation that is minimized is therefore 
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of critical importance in MPC approaches to glucose control.  

The control algorithm that we describe in this paper also uses 

a physiologic model of insulin and glucose metabolism; 

however, we use the model to estimate the subject’s varying 

insulin sensitivity and then modify parameters within a PID 

controller based on this varying sensitivity.  The unique aspect 

of our controller is that we use a PID-like controller in concert 

with a glucoregulatory mathematical model that adjusts for 

changing insulin sensitivity to control blood sugar levels in 

patients.  Comparisons between MPC approaches and our 

algorithm will be discussed. 

Other groups have reported alternative methods for closed 

loop control of blood glucose including those using fuzzy 

logic, artificial neural networks, and those which use 

mathematical models of -cells to control delivery of 

hormones [20-26].   

Vigorous treatment of type 1 diabetes increases the 

frequency of hypoglycemia [27].  In the setting of the artificial 

pancreas, attempts have been made to algorithmically predict 

when a patient is approaching hypoglycemia, leading to 

discontinuation of insulin delivery [28]. However, 

subcutaneously-delivered insulin has a delayed absorption, so 

this approach is not always successful, even with currently 

available fast-acting insulin analogs [29].  Our group [30], as 

well as groups from Boston University (USA) and McGill 

University (Canada) [31-34], have addressed the issue of 

avoiding hypoglycemic events by incorporating a second 

pump that delivers glucagon in response to impending or overt 

hypoglycemia. Glucagon is the natural secretory product of 

pancreatic alpha cells in mammals and is normally released in 

response to hypoglycemia.  Our algorithm adapts to changes 

in insulin sensitivity, which can occur during stress or 

exercise.  

While we have previously reported on certain aspects of our 

controller [35-37], we have not yet presented the entire 

algorithm and automated control hardware and software 

system.  In this paper, we describe the details of the controller, 

the value of each parameter in the model, and describe how 

the parameters were tuned using two types of simulators.  We 

discuss how we integrate a control algorithm with an adaptive 

expert system and a physiologic glucoregulatory model to 

enable automated bi-hormonal drug delivery (insulin and 

glucagon) for the purpose of maintaining glucose homeostasis 

within the near euglycemic range.  The only part of the system 

that is not fully closed loop is the element in which the patient 

must enter a rough estimate of carbohydrate consumption to 

the system.        

II. SYSTEM DESIGN 

The closed loop system that we are presenting here consists of 

two off-the-shelf wire-based continuous glucose sensors 

(SEVEN PLUS and G4 PLATINUM, Dexcom Inc.), two off-

the-shelf micro-delivery pumps (Omnipod, Insulet 

Corporation), and custom controller software running on a 

palm top tablet computer (Viliv, Yukyung). Software was 

developed in C#.NET.  Each sensor interfaces with its own 

receiver and each pump is controlled by its own personal 

diabetes manager (PDM, Insulet) through separate wireless 

channels.  The controller software communicates with the 

sensor receivers and the pump PDMs across a USB interface.  

The receivers and PDMs communicate wirelessly with the 

sensors and pumps, respectively.  A custom battery pack was 

used to power all of the system components during the data 

acquisition process.  Our algorithm relies on redundant sensor 

measurements to help mitigate the risk of sensor drop-outs and 

drift.  The SEVEN PLUS sensors are not capable of 

interfacing with more than one computing device, and so 

when the CGM was used, we used a virtual operating system 

on the Viliv tablet such that one sensor communicated with 

the primary operating system, while the back-up sensor 

communicated with the virtual operating system.  We used 

VMWare Workstation (VMWare, Palo Alto, CA) to enable 

the virtual operating system and used custom software to 

automatically acquire the sensors between the two operating 

systems.   Fig. 1 shows a diagram of the system. 

 

 
The system is capable of delivering both a pre-meal insulin 

bolus and automated insulin or glucagon infusion.  The pre-

meal insulin bolus is calculated based on the patient’s 

indicated carbohydrate intake, estimated to the nearest 20 g.  

The patient enters this carbohydrate amount into the control 

software and the controller then calculates a suggested insulin 

bolus amount.  The patient then acknowledges this amount of 

pre-meal insulin and the bolus is given.  The bolus is then 

given with the expectation that the patient will consume the 

meal at that time.  We believe that the pharmacodynamic 

properties of subcutaneously-delivered insulin are too long to 

enable a fully-automated system without meal announcements.  

While automated meal detection algorithms have been 

proposed [38,39], they may not be able to detect the meal soon 

enough to optimize post-prandial glycemic control.   

A. Overview of control algorithm 

The artificial pancreas control (APC) algorithm used to 

regulate glucose consists of (1) a fading memory proportional 

derivative (FMPD) controller, and (2) an adaptive expert 

system that modifies the insulin delivery rates by changing the 

FMPD gain factors [36]. The adaptive system is based on the 

physiologic model of glucose-insulin regulation developed by 

Hovorka [40] and reported by El Youssef et al [35].  The 
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Fig. 1. System diagram of artificial pancreas hardware components.  
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system takes into account the subject’s HbA1c, weight, total 

daily insulin requirement (TDR), as well as current and prior 

glucose sensor readings, announced meals, rescue 

carbohydrate deliveries, sensor calibration history, and 

calculated insulin sensitivity values.  The system makes 

executive decisions based on the proportional and derivative 

errors (and their histories or ‘fading memories’) using a target 

glucose. A general concept of this control system is shown in 

Fig. 2. 

     The system of automated insulin and glucagon 

administration is specifically designed to minimize the risk of 

the two drugs opposing one another, which would otherwise 

increase the risk for system instability. For example, as 

discussed below in further detail, when glucagon is given to 

treat impending hypoglycemia, the insulin delivery gain 

settings are temporarily reduced in order to avoid triggering 

insulin delivery as a result of the glucagon-induced rise in 

glucose. Although the system is bihormonal in nature, it is 

important to emphasize that it does not require administration 

of glucagon, which is only delivered for rescue purposes. 

 

 
 

1) Fading memory proportional derivative (FMPD) 

control algorithm 

The FMPD controller consists of a proportional error term 

(PE), a derivative error term (DE), and a basal rate term (BR).   

The FMPD controller has separate parameters for controlling 

insulin infusion rate (IIR) as compared with glucagon infusion 

rate (GIR). In this paper, the superscript for mathematical 

terms includes reference to the type of hormone being infused, 

IIR or GIR.   

The proportional error at time t (PE(t)) is the difference 

between a target glucose level (    and a sensed glucose level 

(  . A superscript indicates whether PE is related to IIR 

(     ) or GIR (      .  The insulin and glucagon control 

algorithms use different target glucose levels.  These target 

values (115 mg/dL for insulin and 95 mg/dL for glucagon) 

have been shown to perform well in humans as we have 

demonstrated [36].  The insulin delivery target is more 

conservative at night to reduce the risk of nocturnal 

hypoglycemia.  The target values are summarized in Table 1.    

An exponentially weighted sum of PE terms is averaged 

over the prior 90 minutes such that the most recent PE terms 

receive the largest weighting while those from 90 minutes 

prior are least relevant.  The weighting value at a time t is 

adjusted by the proportional error time constant    
    as shown 

in Equation 1. Likewise, the entire average proportional error 

is scaled by the PE gain constant    
      Note that the weighted 

PE values are only summed every 5 minutes such that a total 

of 19 prior PE(t) readings are included.  The reason for this 

rule is that the sensed glucose measurements only arrive once 

every 5 minutes from the Dexcom sensors. The term k is a 5-

minute increment index such that when k=3, for example, the 

PE(t-5k) term is from 15 minutes prior to the current time. 

 

Equation 1:       
          

    (
∑          (     

      )  
   

  
) 

The derivative error term (DE) is defined as the slope or the 

change in sensed glucose over the prior 10 minutes.  If the 

subject’s glucose is changing very rapidly, the IIR will be 

adjusted more significantly because the DE term will be 

larger.  It is important to use a short time period over which to 

estimate DE so as to more accurately capture the change in 

glucose at a given point in time.  A linear least-squares 

regression was done on the prior 10-minute data record to 

calculate this slope DE term.  As was carried out with the PE 

average, the DE terms are also averaged over the prior 90 

minutes using a weighted average that is dependent on the DE 

gain constant (   
    and the DE time constant (   

    .  Using a 

weighted average of DE over 90 minutes minimizes the 

influence of sensor noise on the IIR calculation (Equation 2).  

The selection of the gain and time constants were derived 

empirically as previously described [36].  Model parameters 

were derived within rats.  For use within humans, the model 

parameters were tuned using the UVa-Padova simulator [41-

42] and separately using a simulator based on the 

glucoregulatory model described by Hovorka et al. [40] 

implemented using Visual Basic for Applications within 

Microsoft Excel (Microsoft Inc., Redmond, WA). 

 

Equation 2: 

      
          

    (
∑        -    ( -   

      )  
   

  
) 

The subject’s initial TDR is obtained from an interview of the 

patient. Due to the fact that TDR is underestimated in patients 

with poorly-controlled diabetes, this TDR value is adjusted 

using the patient’s HbA1c according to Equation 3.  An 

HbA1C of 7% is chosen as a target for the initial TDR 

adjustment based on ADA recommendations [43]. If the 

subject’s TDR is above 7%, the TDR will be increased by 

10% for every 1.5% increase in HbA1C.  This relationship is 

given in Equation 3 whereby the constants 0.0667 and 0.5331 

were selected to enable this relationship between the subject’s 

clinical TDR, their TDRAdj and the HbA1C. 

 

Equation 3: 

       {
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Fig. 2.  APC algorithm that consists of the FMPD control algorithm that is 

updated by an adaptive expert system. 
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TDRAdj is then used to calculate the basal rate of insulin 

delivery which depends on the patient’s sensed glucose 

relative to their target glucose level.  If the sensed glucose is 

below 60% of the target, then the basal rate is zero.  If the 

sensed glucose is between 60% of the target and the target, 

then the basal rate is linearly proportional to the TDRAdj and 

the basal multiplier (    according to Equation 4.  And 

finally, if the sensed glucose is greater than or equal to the 

target, then the basal rate is a fixed value corresponding to the 

TDRAdj and the basal multiplier.  The basal multiplier was 

selected by running simulations using the UVa-Padova 

simulator [41,42].   

 

Equation 4: 

       

{
 
 

 
 

         

  
        

(
         

  
)  [(

        

  
) -   ]                

             

 

The insulin infusion rate at time t is then a sum of the 

weighted average PE, weighted average DE, and basal rate 

terms according to Equation 5. 

 

Equation 5:              
            

              

 

Insulin on board at time t (IOB(t)) is a weighted sum of all 

past insulin boluses (B) over the past 9 hours as defined by 

Equation 6.  If IOB(t) exceeds 20% of TDRadj, then IIR gets 

set to 0 as shown in Fig. 3.  The decay constant of IOB was 

selected based on data presented by Holmes et al [29]. 

Equation 6: 

        ∑       

  

   

 ∑        

   

    

             

The glucagon infusion rate (GIR) is calculated in a manner 

similar to that of the insulin infusion rate.  GIR is calculated 

using a PE term and a DE term, however, the target glucose is 

independent of the insulin target glucose.  This independence 

enables the GIR control parameters to be adjusted without 

influencing the control of insulin.  Unlike the IIR calculation, 

the GIR calculation does not include a basal delivery rate.  

Furthermore, the history over which the weighted average is 

taken for the proportional error is smaller (15 minutes) as 

compared with 90 minutes for insulin.  This is because 

glucagon acts faster than insulin within the body. 

Equation 7: 

      
          

    (
∑           -    ( -   

      ) 
   

 
) 

Note that the glucagon PE average is dependent on the 

patient’s weight (W), the glucagon PE, the glucagon decay 

time constant    
    and the PE gain constant (   

    .  

 

Equation 8: 

      
       

    (
∑            (     

      ) 
   

 
) 

Finally, the GIR is the sum of the average      
    and      

    

terms.  There is no basal rate term for calculating GIR. 

 

Equation 9:                   
            

       

2.  Adaptive expert system (AES) 

The adaptive expert system (AES) consists of two sub-system 

components, (1) a decision tree based on the FMPD output 

along with patient-specific information, and (2) an adaptive 

physiologic model that calculates the patient’s insulin 

sensitivity once every 30 minutes and feeds this information 

back to the FMPD algorithm in the form of the TDR.  Each of 

these is further discussed below. 

B. Decision tree 

During the use of the system, the patient and the clinician have 

the ability to enter various events including meals, oral rescue 

carbohydrates, intravenous (IV) carbohydrates, and sensor 

calibrations.  The inclusion of IV carbohydrates is applicable 

only to studies done in an inpatient setting. Intravenous 

carbohydrates were given if the patient’s glucose dropped 

below 50 mg/dL.  The IIR and GIR values calculated by the 

FMPD algorithm are adjusted according to these events using 

the decision trees shown in Figs. 3 and 4, respectively.  As an 

example of the rationale for these special circumstances is the 

following: As glucose rises quickly after a glucagon dose or 

after oral rescue carbohydrates, it would be inappropriate for 

the rising slope to trigger the derivative element of IIR. If IIR 

were not reduced during these circumstances, one could see 

instability in the system during which IIR and GIR both 

escalate to compensate for each other’s independent effects. 

The IIR is adjusted according to four events: (1) the 

maximum glucagon over a 50-minute period has been 

exceeded, (2) an oral rescue carbohydrate has been given in 

the past 15 minutes for treatment of hypoglycemia, (3) an IV 

carbohydrate has been given in the past 20 minutes for 

treatment of hypoglycemia, or (4), the maximum IOB has 

been exceeded.  

The IIR is reduced to 25% of its FMPD calculated value 

(IIRFMPD ) if the amount of glucagon delivered within a 50-

minute period (GGLimit) has exceeded a maximum value or if 

an oral rescue carbohydrate load has been given within 15 

minutes for treatment of hypoglycemia.  If either of these 

conditions arises, then the IIR is reduced to 25% of IIRFMPD 

for 40 minutes. The 40-minute turn-down period was selected 

because it represents the half-life of maximum insulin action 

[29].  The 25% reduction in IIR was chosen based on clinical 

standards of care [43] and was verified in-silico using the 

UVa-Padova simulator [41,42].  Intravenous carbohydrate 

delivery or the condition whereby IOB has exceeded 20% of 

TDR results in a complete turn-off of insulin infusion.   
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The GIR calculated by the FMPD algorithm (GIRFMPD) is 

adjusted using a decision tree as shown in Fig. 4.  The 

maximum glucagon that may be delivered by the system 

within a 50-minute period is termed GGLimit. GGLimit is defined 

according to Equation 10.   

Equation 10:
         

{
       (       

   

      
               )                

                              

 

Notice that the maximum glucagon delivered within a 50-

minute period is dependent on the glucagon concentration 

(GGconc), the patient’s weight (W), and the ratio of the IOB 

and the TDRAdj for that patient.  If the patient’s IOB is less 

than 20% of the TDRAdj, then the GGLimit is proportional to the 

ratio of IOB/TDRAdj within the range of that subject’s 

minimum and maximum limit glucagon delivery amount 

(GGLMax and GGLMin) which are dependent on the subject’s 

weight (W). If the IOB is greater than 20% of the patient’s 

TDRAdj, then GGLimit  is set equal to the limit of the maximum 

glucagon delivery amount. 

 
The glucagon decision tree in Fig. 4 is based on three 

conditions: (1) has the maximum 50-minute glucagon as 

defined by Equation 10 been exceeded, (2) has the maximum 

glucagon delivery over 24-hours been exceeded, and (3) has a 

meal occurred within the last 20 minutes.  If any of these 

conditions occur, the GIR is set to 0.  Otherwise, the GIR is 

set according to the FMPD algorithm. 

C. Adaptive physiologic model 

We have incorporated a glucoregulatory model for estimating 

insulin sensitivity based on the one described by Hovorka et 

al. [40]. The Hovorka model describes a 3-compartment 

model including a glucose compartment, insulin absorption 

compartment, and insulin action compartments which feed 

back to the glucose compartment. This model can be used to 

estimate the patient’s insulin sensitivity based on their current 

and prior sensed glucose readings, meal events, and insulin 

bolus amounts. The insulin sensitivity is estimated every 30 

minutes using the approach described further below and in 

Fig. 5.  

 
The newly estimated insulin sensitivity is related to TDR 

using Equations 11 and 12 and also further explained below.  

Because TDR influences both glucagon and insulin delivery 

(Equation 4 and Equation 10, respectively), the control 

algorithm adapts the delivery of hormones based on a patient’s 

changing insulin sensitivity.  Details of the Hovorka model 

and how we have used it to adjust insulin sensitivity are 

included in the appendix of El Youssef et al. [35].  Fig. 5 

provides a summary of how it was used in this study.    
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Fig. 3.  Insulin infusion rate (IIR) decision tree.   
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Fig. 4  Glucagon infusion rate (GIR) decision tree.   
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     Notice in Fig. 5 that every 30 minutes, the TDR is updated 

based on the subject’s updated insulin sensitivity.  The 

patient’s insulin sensitivity is estimated by using the patient’s 

prior 90 minutes of sensed glucose along with meal data, oral 

rescue / IV carbohydrates, and insulin boluses delivered 

during that time and comparing the sensed glucose with 

glucose values predicted by a glucoregulatory model [40].  

One of the parameters in the glucoregulatory model is an 

insulin sensitivity composite coefficient (Sc).  When 

determining the patient’s insulin sensitivity, we select a 

fraction of the sensitivity composite coefficient that can range 

from 0.1 to 2.0 of the original setting.  The final fraction is 

selected based on a least squares fit of the patient’s prior 90 

minutes of sensed glucose data with respect to the model-

predicted glucose values.  The sensitivity composite is 

selected which yields the closest match of the model-predicted 

glucose with the prior 90 minutes worth of sensed glucose 

data using a mean-squared-error criteria. 

  The  sensitivity composite coefficient and the sensitivity 

composite exponent were chosen by modeling the relationship 

between TDR and insulin sensitivity using the glucoregulatory 

model [40].  The glucose target of 115 was selected and for 

each insulin sensitivity composite (Sc), which is a percentage 

of the model sensitivity, was varied between 10 and 200%; the 

insulin infusion (mU/kg/minute) that maintained glucose at the 

target was plotted relative to the sensitivity composite.  This 

relationship is a nonlinear inverse function and a power 

regression was fit with an R
2
 of 0.9995 (see Fig. 6) to 

determine the sensitivity exponent value (Se).   

 
Equation 11:              

   

We can convert the basal rate determined in Equation 11 to a 

TDR by adjusting for the subject’s weight and by multiplying 

the basal rate in Equation 11 by the total number of minutes in 

a day (1440).  Dividing by a factor of 1000 converts the units 

from mU to U.  We multiply the basal rate by a factor of 2 

because we assume that the basal rate delivered by a patient is 

typically about ½ of their TDR.   Equation 12 summarizes the 

relationship between the target basal rate and the TDR. 

Equation 12:     
                 

    
 

The rate at which theTDR was allowed to change was limited 

to avoid representing a non-physiologic swing in insulin 

sensitivity.  This limitation in the rate at which TDR could 

change was controlled by the TDR up-governor and down-

governor.  The values of 6% and 12% for the up and down 

governors, respectively, were selected empirically running 

simulations of data within the glucoregulatory model [40] 

implemented within Excel using Visual Basic for 

Applications.    The more stringent limit on the TDR up-

governor is to avoid hypoglycemia resulting from an 

inappropriate increase in TDR, such as that may occur with a 

glucose sensor that is over-estimating blood glucose.  The 

insulin sensitivity influences the basal rate using Equation 12, 

and influences the PE and DE using Equation 13. 

Equation 13:               
       

             

              
       

                     

The adjustment factor (    ) was selected to ensure that as 

TDR is adapted with a patient’s changing insulin sensitivity, it 

only influences the gain factor by a limited amount.  This 

adjustment factor is set according to Equation 14. 

Equation 14:                                       

A. Model parameters summary 

The model parameters for the control algorithm are shown in 

Table 1.   

 
The values shown in Table 1 were initially chosen based on a 

study done on diabetic rats as described [36].  Notice that the 

PE gain constant is significantly smaller than the DE gain 

constant.  Given the delayed action of subcutaneous insulin, 

the change in glucose is more relevant than the absolute error.  

Also note that the decay constant for the PE is smaller than the 

 
Fig. 6. Relationship between IIR and insulin sensitivity composite.  For 

lower sensitivity to insulin, IIR is higher, and it changes based on different 

target glucose levels as shown.  These curves were determined by Equation 

11 empirically using simulation runs. 
 

 TABLE 1 

APC Model Parameters 

Parameter Description Value 

   
    Insulin PE gain constant 0.08 

   
    Insulin DE gain constant 0.45 

   
    Insulin PE decay constant 0.03 

   
    Insulin DE decay constant 0.18 

   Basal rate multiplier 0.4 

   Percent pre-meal insulin 60% 

   
    Glucagon PE gain constant -2.7 

   
   

 Glucagon DE gain constant -0.6 

   
    Glucagon decay constant 0.3 

   
    Glucagon DE decay constant 0.4 

   
   ⁄  Max IOB/TDR ratio 0.20 

       Maximum glucagon limit in 50 min 

[g/kg]. 

2 

       Minimum glucagon limit in 50 min 

[g/kg] 

0.4 

   
    Day target glucose level for insulin 

[mg/dL] 

115 

   
    Night target glucose level for insulin 

[mg/dL] 

140 

   
    Day target glucose level for 

glucagon [mg/dL] 
95 

   
    Night target glucose level for 

glucagon [mg/dL] 

95 

      Glucagon refractory period [min] 50 
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decay constant for the DE.   The inverse of this decay constant 

represents the half-life of the insulin infusion caused by a 

change in glucose.  The basal gain constant is set to 0.4, which 

translates to 40% of the subject’s TDR.  In a typical clinical 

scenario, between 40-60% of TDR is used as basal infusion 

for type 1 subjects who use insulin pumps.   

The model parameters for the adaptive algorithm are given in 

Table 2 and were chosen by running simulations to determine 

how the adaptive algorithm responds to dynamic events such 

as meals as well as rapid increases and decreases in glucose.   

 

III. METHODS 

Subjects were recruited from clinics at Legacy Health and 

Oregon Health and Science University (OHSU).  Subjects 

were required to have type 1 diabetes for at least one year, to 

be age 21-65 years old, and to be currently using an insulin 

pump.  Women of childbearing age were required to have a 

negative urine pregnancy test prior to participation.  Patients 

with prior history of cardiovascular, cerebrovascular, kidney, 

or liver disease or any other uncontrolled chronic medical 

conditions were excluded.  Other exclusion criteria included 

oral or parenteral corticosteroid use, adrenal insufficiency, 

seizure disorder, immunosuppressant use, visual or physical 

impairments that impede the use of a continuous glucose 

monitoring (CGM) device, insulin or glucagon allergies, 

hypoglycemia unawareness, serum insulin antibody level ≥ 

100 µUnits/ml, C peptide level ≥ 0.5 mg/ml, or insulin 

resistance requiring more than 200 units of insulin per day.   

The research protocol was approved by the Legacy and 

OHSU Institutional Review Boards, and all subjects provided 

written informed consent.  Permission to carry out these 

studies was granted by the U.S. Food and Drug Administration 

(IDE #G120009).  A total of 13 closed loop studies were 

performed.  The mean age of the subjects was 39.5 ± 10.9 

years, mean duration of diabetes was 22.5 ± 12.4 years, 

HbA1c was 7.7 ± 0.6 %, TDR was 50.1 ± 11.2 u/day and 

weight was 82.7 ± 18.5 kg. 

Subjects (n = 13) participated in a 28 hour sensor-

augmented automated glycemic control experiment.  Subjects 

were fitted with two subcutaneous sensors (Dexcom™ 

SEVEN® PLUS CGM or Dexcom G4 PLATINUM) systems 

the day prior to their study visit.  During this period subjects 

were trained by study personnel on how to use and calibrate 

the CGM system as well as instructed not to eat (unless 

necessary for treatment of hypoglycemia) after midnight prior 

to the study.  During this 8-hour pre-study period, subjects 

performed calibration using a OneTouch Ultra 2 blood glucose 

meter.  Upon arrival, subjects were admitted and an IV 

catheter was placed.  Venous blood glucose (VBG) was 

sampled every hour during the day (07:00 h–23:00 h) and 

every two hours at night (if one sensor failed, the nocturnal 

frequency of venous blood glucose draws increased to every 

hour). In addition, extra safety blood glucose draws occurred 

at night (23:00 h-07:00 h) when the insulin infusion rate (IIR) 

was ≥ 0.4 units/kg per hour averaged over 30 minutes and the 

IIR rate of rise obtained over 30 minutes was also ≥ 0.4 

units/kg per hour.  When average sensed glucose reached ≤ 85 

mg/dL, VBG was measured every 20 minutes until the reading 

went above 85 mg/dL.  At any point when VBG was ≤ 70 

mg/dL the frequency of blood draws increased to every 10 

minutes until VBG increased above 70 mg/dL. 

An insulin infusion pump (OmniPod, Insulet Corp) was 

filled with aspart insulin (NovoLog, Novo Nordisk) and a 

second OmniPod was filled with glucagon (GlucaGen, Novo 

Nordisk), reconstituted with sterile water to 1 mg/ml.  A new 

pod with fresh glucagon solution was prepared and inserted 

into the subject every 8 hours. 

During each inpatient experiment, the CGM telemetrically 

streamed sensed glucose data every 5 minutes to a handheld 

tablet computer (Viliv, Yukyung) running the control 

TABLE 2 

Adaptive Model Parameters 

Parameter Description Value 

TDRug Up governor 6% 

TDRdg Down governor 12% 
Se Sensitivity composite exponent -0.83 

Sc Sensitivity composite coefficient 5.3 

   

 

  
Fig. 8.  Results showing glucose control over entire study duration for all subjects in both the 7+ and G4 studies.  Mean and upper/lower bounds are shown.  

Notice that control was best during the night.  Meals occurred at 60, 300, 600, and 1500 minutes from the experiment start time. Glucose levels were higher 
during the first 5 hours of the study because the subjects arrived at the study in hyperglycemia.  Furthermore, the APC algorithm system parameters need time to 

initialize.  In the remainder of results presented in this paper, we exclude the first five hours of data. Average insulin and glucagon are plotted on second y-axis 

with the insulin delivery shown going up and the glucagon delivery shown going down. 
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algorithm described above. The algorithm used the average of 

the two sensor values to compute insulin and glucagon 

infusion rates and automatically call for the insulin or 

glucagon delivery at the calculated rates by the OmniPod 

pumps which delivered the hormones subcutaneously.  The 

CGM sensors were calibrated at time zero and every 6 hours 

for the duration of the 28 hour study.  Sensor recalibration 

occurred if accuracy became suboptimal, defined as when the 

absolute relative difference (ARD) met or exceeded 35% for 

glucose ≥ 75 mg/dL or when the absolute difference exceeded 

30 mg/dL for glucose < 75 mg/dL.  In addition sensor 

calibration occurred when the system determined that the two 

sensors differed by more than 60%. 

During the experiment each subject was given four meals: 

breakfast, lunch, and dinner on Day 1, and breakfast on Day 2.  

Meals were self-selected by the subject from the hospital 

menu.  By design, the precise carbohydrate content for meals 

was not entered into the controller. Instead, subjects were 

asked to estimate the carbohydrate content to the nearest 20 

grams, and this value was entered into the APC which 

determined an appropriate insulin pre-meal bolus based upon 

60% of the subject’s standard insulin-to-carbohydrate ratio for 

their current TDR.  The insulin bolus command was then sent 

wirelessly to the insulin pump for delivery. 

1) Phase 1 and phase 2 of inpatient study 

Results are presented from two separate phases of the study.  

The control algorithm used was the same in both studies.  In 

the first phase, we used the Dexcom SEVEN PLUS sensors.  

In the second phase, we moved to the more accurate and 

reliable Dexcom G4 PLATINUM once it was made available. 

We also made improvements in the communication protocol 

with the OmniPods.  Results from these two phases are 

summarized separately and individual results are designated 

with either a 7+ or G4 designator in the results tables below.  

Glucose values during both studies were well controlled, 

however control was better for the G4 study.  A plot showing 

a grand mean and standard deviation of all data plotted during 

the both 7+ and G4 studies is shown in Fig. 8. 

IV. RESULTS 

For the 7+ study, the study went to completion for 7 out of 

the 8 subjects.  The one subject who did not complete the 

study was stopped after 20 hours due to failure of the palmtop 

tablet computer to hold a charge.  For the Dexcom G4 study, it 

went to completion in 5 out of 5 subjects. 

The mean blood glucose value across all subjects in both 

inpatient studies was 153 mg/dL. It should be noted that most 

subjects were quite hyperglycemic upon entry into the study 

(mean entry glucose, 199 mg/dL). Therefore, a more 

appropriate glycemic control metric may be calculated by 

excluding the first 5 hours to discount the effect of insulin 

delivered prior to automated control. Results obtained with 

such an exclusion criteria are as follows: mean glucose: 147.4 

mg/dL; mean daytime glucose: 160.1; mean nocturnal glucose, 

11 PM to 7 AM: 139.2.    

A control variability grid is shown in Figure 9.  The A 

region is considered accurate control, lower B is benign 

deviations into hypoglycemia, B is benign control deviations, 

upper B is benign deviations into hyperglycemia, lower C is 

overcorrection of hypoglycemia, upper C is overcorrection of 

hyperglycemia, lower D is failure to deal with hypoglycemia, 

upper D is failure to deal with hyperglycemia, and E 

represents failed control or errors [44].   

 
Results show that the subjects evaluated during the G4 

study were better controlled than during the 7+ study, with 

results from the G4 study all falling within the B or upper B 

regions.  There were no values in the E region for either of the 

studies.  One of the reasons why the results were better for the 

G4 study than the 7+ study had to do with improvements we 

made with communication between the tablet computer and 

the sensors and the Omnipod PDMs for the G4 study.  There 

were times in the 7+ study when communication failed 

between the sensors or the glucagon pump during 

hypoglycemic events which prevented the system from 

responding with glucagon dosing in a timely manner.  

 

  

 
Fig. 9.  Control variability grid.  Each dot on the graph represents results 
from a single trial.  The horizontal axes represent the minimum glucose level 

above which 95% of the subject’s venous glucose values were measured 

during the study.  The vertical axis is the maximum glucose below which 
95% of the subject’s values were measured during the study. The white 

circles are from the study done using the Dexcom G4 sensors which have 

been found to be more accurate and reliable than the Dexcom 7+ sensors 
(black circles).  Control was significantly better when using the G4 sensors. 
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 Fig. 10.  Cumulative glucose graph.  Each line represents the entire closed 

loop trial for a single subject with the data plotted to show the percent of 
time spent in each glucose range, severe hypoglycemia (<60 mg/dl), 

hypoglycemia, (60-70 mg/dl), euglycemia (70-180 mg/dl).  
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     A cumulative glucose plot is shown in Fig. 10.  As depicted 

there were instances of hyperglycemia, and to a much lower 

degree hypoglycemia, with the values predominantly in the 

euglycemic range. While Figure 10 may appear to indicate 

that there was a change in algorithm tuning between 7+ and 

G4, this was not the case.  The algorithm did not change 

between 7+ and G4 studies.  What changed between the two 

was the accuracy and reliability of the sensors in G4 relative to 

7+.  By ensuring that glucose sensor data was reliably 

transmitted and was accurate, the overall performance and 

control of the system improved.   

     A primary feature of our closed loop system is that we use 

glucagon to avoid hypoglycemic events.  Fig. 11 shows that 

when we switched to the G4 sensors and improved 

communication between the tablet computer and the PDM 

hardware, there were no occurrences of hypoglycemia, and the 

mean absolute relative error was significantly less than during 

the 7+ study.    

 
1) Meal analysis 

A critical component of an AP control system is the ability 

to handle meal events.  In this study, subjects were asked to 

estimate the amount of carbohydrates in a meal announcement 

that they then input into the APC system, which simulates a 

real-life situation whereby subjects must estimate their 

carbohydrate intake.  On average, the subjects underestimated 

the amount of carbohydrates in their meal as shown in Table 

3. 

 
The post meal increment in blood glucose (average of 1 and 

2 hour post meal minus pre-meal value) for the entire study 

duration was 12 mg/dL; however, this value is misleadingly 

optimistic because glucose was unstable during the first 5 

hours of the study and markedly declined after the second 

meal as the automated system called for substantial doses of 

insulin. This is apparent in Fig. 12 which shows that glucose 

levels decreased after lunch on the first day, as the patient’s 

glucose levels were still being brought down by the control 

system.  The post-meal glucose levels increased as expected 

for the dinner and breakfast. If one excludes the first two 

meals (first breakfast and lunch), the mean increment was 30 

mg/dL. This degree of glycemic control falls within a range 

that virtually always is associated with avoidance of long term 

complications in persons with type 1 diabetes [43]. 

 
When the 60 minute period after each glucagon dose was 

analyzed, the glucagon was successful in keeping sensed 

glucose above 70 mg/dL in 86% of cases; above 60 mg/dL in 

91% of cases, and above 50 mg/dL in 100% of cases.   

Rescue carbohydrate was given for blood glucose values of 

less than 60 mg/dL. For the 7+ study, the mean number of 

rescue carbohydrate doses was 0.9 per study (median, 0.5).  

Four out of the 8 subjects in the 7+ study required rescue 

carbohydrates.  All oral rescue carbohydrates were given 

during the day.  Three IV carbohydrates were given during the 

7+ phase of the study. Two of these were given during the day 

(subject 301-B and 313), and one was given in the middle of 

the night (subject 313). The reasons these rescue 

carbohydrates were required have to do with mis-estimations 

of carbohydrate intake combined with problems with the 

glucagon pump telemetry.  For example, when subject 313 had 

lunch, he estimated his carbohydrate intake to be 100 g, but 

his actual carbohydrate intake was 57.  This caused a 

significant over-delivery of insulin which caused a subsequent 

hypoglycemic event.  Subsequently, there was a failure of the 

glucagon pump to deliver, which then led to an IV 

carbohydrate intervention. There were no oral or IV 

carbohydrates delivered for the G4 study as shown in Table 4.  

Also provided in Table 4 is the low blood glucose index for 

each subject tested and the total insulin and glucagon 

 

 
Fig. 11.  Closed loop studies done using the G4 sensors yielded significantly 

lower error and also zero incidence of hypoglycemia (values less than 70 

mg/dl) compared with the studies done using the older 7+ sensors.  The one 
outlier study which showed 28% of values < 70mg/dl was a subject whose 

glucagon pump was not functioning properly.  This subject’s study ended 

early because of the pump failure, thereby creating a high percentage of 

values less than 70 mg/dL 

TABLE 3 

Estimated vs. actual carbohydrate intake in grams 

 Breakfast 

Day 1 

Lunch Day 1 Dinner Day 

1 

Breakfast 

Day 2 

Mean estimated 62.5 65.0 65.7 54.3 
Mean actual 73 72 93 69 

 

  
Fig. 12.  Glucose excursions two hours after a meal.  Notice that the glucose 

increased (up arrow) after both dinner and breakfast, but decreased (down 

arrow) after lunch.  The reason that glucose dropped after lunch is because 
the subjects arrived hyperglycemic, and the system had not yet had time to 

bring their glucose levels into the euglycemic range prior to lunch. 
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delivered for each subject.  Results for each subject are 

presented to show intersubject variability in Table 5.  

   

 
     Telemetry problems with the sensors were common. Due 

largely to signal strength issues, the Dexcom SEVEN PLUS 

sensors were off-line on average 17.3% of the time. The 

pumps were somewhat more reliable; overall, the insulin and 

glucagon pumps delivered their prescribed doses 93% of the 

time. The Viliv tablet computer was sometimes unreliable 

(several failure modes).  The G4 sensors were significantly 

more accurate than the 7+ sensors as summarized in Table 6.     

 

V. DISCUSSION AND CONCLUSIONS 

The closed loop control system presented here performed 

well during the inpatient study, particularly after meals and 

during the evening time.   

A. Comparison with other AP control systems 

There have been many closed loop clinical trials and an 

especially large number of them over the past several years.  

Results from these trials generally demonstrate that closed 

loop control can lead to glucose levels ranging within the 

normal glycemic range of 70-180 mg/dL approximately 70% 

of the time.  For example, the dual-hormone closed loop 

system described in Russell et al. [31] was able to achieve 

mean plasma glucose of 158 mg/dL with 68% of the glucose 

values within the range of 70-180 mg/dL.  At nighttime, their 

control was at 123 mg/dL with 93% within the euglycemic 

range.  Another bihormonal closed loop system described in 

Haidar et al. [34], showed how the use of glucagon could 

nearly eliminate hypoglycemia while maintaining euglycemia 

for 70.7% of the time compared with standard open-loop 

control (57.3%).  However the Haidar et al. system is not 

automated and the bolus amounts of glucagon and insulin 

were suggestions made by the algorithm with the actual 

amounts given by a clinician rather than automatically.  The 

system described in Breton et al. [17] was not bihormonal and 

only supplied insulin to the patient.  The Breton et al. system 

maintained overall glucose levels on average at 120 mg/dL 

and nighttime values at 110 mg/dL.  The Breton et al. system 

maintained glucose control within the normal glycemic range 

of 70-180 mg/dL for an impressive 90.1% of the time.  

However, there were also reports of hypoglycemia (1.1 

episodes per patient) in the Breton et al. study.  For a single-

hormone system the only means for preventing hypoglycemia 

is to predict when a hypoglycemic event is forthcoming, and 

then to turn off the insulin delivery.  Our system takes 

advantage of a secondary pump that can help to prevent 

hypoglycemia through the delivery of glucagon when a 

hypoglycemic event is pending.  During our inpatient study, 

the average venous blood glucose across subjects was 145.3 

for the 7+ study and 150.7 for the G4 study.   For our system, 

we were able to maintain subjects’ glucose levels within the 

near-normal glycemic range for 72.5% of the study duration as 

measured by taking the percentage of venous blood glucose 

draws that measured below 70 mg/dL relative to the total 

venous blood glucose draws normalized with respect to time 

across both studies.   Importantly, for the G4 study, none of 

the subjects had a hypoglycemic event.  We attribute this 

prevention of hypoglycemia to the use of the bihormonal 

system whereby glucagon leads to rapid glycogenolysis as the 

patient’s glucose begins to drop and approach the target 

glucose.  In contrast, in single-hormone systems such as the 

one described by Breton and colleagues, 32% of their subjects 

experienced a hypoglycemic event.  When we include both the 

7+ and the G4 data, our subjects experienced hypoglycemia 

(sensed glucose <70 mg/dL) for 1.5% of the time.  

Comparisons between our results and other studies is 

summarized in Table 7.  We acknowledge that the G4 study 

included only 5 subjects, which is likely too few subjects to 

conclude that control was significantly improved between the 

G4 vs. the 7+ study. 

B. Summary, technical challenges and future directions 

To avoid complications caused by long-term exposure to 

hyperglycemia, the American Diabetes Association 

recommends HbA1c levels to be below 7% [43], which 

translates to a glucose level of 154 mg/dL. While the 

automated system described here achieved this goal, the 

results from this study also highlighted several technical issues 

TABLE 4 

Summary of delivery metrics during closed loop control  

Subject Study Oral Carb 

[count / 
amount] 

IV carb 

[count / 
amount] 

LBGI Ins 

given 
[units] 

Glcgn 

given 
[mcg] 

      7+ 0 / 0 1 / 5 g 4.65 64.90 436 

    7+ 2 / 40 g 0 / 0 7.83 66.75 673 

    7+ 0 / 0 0 / 0 3.06 76.25 752 

    7+ 0 / 0 0 / 0 2.87 89.45 363 

    7+ 1 / 26 g 2 / 45 g 15.67 83.90 635 

    7+ 2 / 40 g 0 / 0 6.50 48.40 560 

    7+ 0 / 0 0 / 0 0.18 30.90 57 

    7+ 0 / 0 0 / 0 1.58 62.70 453 

Mean all 7+ 0.6 / 13.3 0.4 / 0.6 5.29 59.90 453 

500 G4 0 / 0 0 / 0 0.56 32.90 44 

504 G4 0 / 0 0 / 0 1.84 51.10 185 

505 G4 0 / 0 0 / 0 0.84 62.10 421 
506 G4 0 / 0 0 / 0 2.51 105.50 259 

506 G4 0 / 0 0 / 0 0.06 74.80 68 

Mean all G4 0 / 0 0 / 0 1.31 65.3 195 

 TABLE 5 

Results of glucose control across all subjects  

Subject Study Mean 

VBG 

[mg/dL] 

StdDev 

[mg/dL] 

%<70 

mg/dL 

%>70 

<=180 

mg/dL 

%>180 

mg/dL 

      7+ 133.5 36.7 0.8% 83.5% 15.7% 

    7+ 137.6 40.9 0.8% 86.0% 13.2% 

    7+ 139.3 40.0 0.0% 84.3% 15.7% 

    7+ 153.0 49.8 0.8% 57.1% 42.1% 

    7+ 167.6 65.8 4.6% 55.7% 40.9% 

    7+ 147.4 50.3 3.2% 61.4% 34.6% 

    7+ 158.4 54.0 0.0% 64.7% 35.3% 

    7+ 125.6 31.9 0.0% 92.1% 7.9% 

Mean all 7+ 145.3 46.2 1.3% 73.1% 25.7% 

500 G4 147.4 54.2 0.0% 78.3% 21.7% 
504 G4 125.6 42.6 0.0% 74.8% 25.2% 

505 G4 125.6 36.3 0.0% 83.2% 16.8% 

506 G4 173.0 62.3 0.0% 60.6% 39.4% 
506 G4 181.8 69.1 0.0% 60.9% 39.1% 

Mean all G4 150.7 52.9 0.0% 71.6% 28.4% 

 

TABLE 6 

Clarke Error Grid showing sensor accuracy of Dexcom 7+ vs. G4 sensors for 
inpatient study (average between two sensors) 

Sensor A B C D E 

7+ 72.6% 25.2% 0 % 2.2% 0% 
G4       9.9% 0% 0% 0% 
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that must be overcome to make the artificial endocrine 

pancreas a reality.   

While the bihormonal system can help to prevent 

hypoglycemia, there are disadvantages to using glucagon.  The 

primary disadvantage is that current formulations of glucagon 

are not stable beyond 8 hours.  This is why patients in our 

study had to change their glucagon pods every 8 hours.  In the 

future, we plan to use new formulations of glucagon, currently 

under clinical trials testing, which are stable for multiple days. 

An additional disadvantage is that excessive glucagon delivery 

to a patient may lead to liver glycogen depletion.  If liver 

glycogen depletion occurs, the patient’s glucose will not 

increase and hypoglycemia could result.  Furthermore, 

excessive glucagon administration can lead to side effects 

including hyperglycemia and nausea.  Our control algorithm 

limits glucagon delivery amounts as described in Equation 10 

and Figure 4.  None of our subjects experienced side effects of 

glucagon over-exposure and a study using non-invasive 

imaging to estimate hepatic glycogen is underway to address 

the question of potential glycogen depletion resulting from 

repeated SC doses of glucagon.  An additional limitation of 

our AP system is that it requires the patient to provide an 

estimate of carbohydrate  intake into the system during meals.  

If a patient enters an incorrect amount, the algorithm will 

potentially deliver an incorrect amount of hormone in 

response. Several groups have proposed methods for 

accounting for inaccurate estimates of carbohydrates by the 

patient [14,45] and in the future, we will consider improving 

our algorithm to handle inaccurate meal estimates. While 

some other groups’ AP algorithms do not require a meal 

announcement, we feel that it is necessary for the patient to 

estimate his carbohydrates so that insulin can be delivered 

immediately to overcome the slow action of currently-

available insulin preparations.    

Wireless telemetry for communicating with the sensors and 

the pumps was a problem during the study. Fortunately, our 

system utilized two sensors which enabled continued 

automation when one sensor was missing.  The purpose of 

having two sensors is primarily to help overcome the problems 

associated with sensor inaccuracy, for example when signal 

averaging was used by Castle et al. [44].  Averaging cannot be 

carried out when a sensor value does not arrive because of 

telemetry problems. In future studies, we will continue to use 

the next generation Dexcom sensors (G4 PLATINUM) which 

we have already found to have a more reliable wireless 

interface. The reliability and accuracy of the G4 sensors has 

made it unlikely that we will need to use 2 sensors in the 

future.  Because of the difference in performance between the 

7+ and G4 studies (trend toward less hypoglycemia with the 

latter), it is natural to assume that the system is sensitive to 

sensor inaccuracies and / or missing sensor data.  Like all 

closed loop control systems, the system performance is 

dependent on accurate sensor readings.  We attempted to 

mitigate sensor inaccuracy by using two sensors. In the future, 

we plan to use a single G4 sensor which is both more reliable 

and more accurate than the earlier Dexcom models. 

The wireless interface for the pumps performed poorly for 

the Insulet iDex.  Our set-up required that both the Dexcom 

receivers and the Insulet PDM be hard-wired to a USB port, 

making disconnection during regular activities of daily living 

a common problem.  In the future we will be migrating to a 

fully wireless system that will have the mobile phone 

communicating directly with the sensors and the pumps 

without requiring the sensor receiver or the pump PDM to 

enable communication. 

We conclude that the bihormonal APC algorithm presented 

here functioned well when the hardware was functional, 

especially in preventing hypoglycemia.  We therefore expect 

the system to perform well in an outpatient study once the 

hardware inter-connections are made to be more robust.     
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Comparison of AP control systems 

System Summary of results 

OHSU, this paper 
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or G4 sensors.  Euglycemia for 72.5% of the study 

duration.   Zero hypoglycemic events for subjects 

wearing the G4 sensors.  For subjects wearing either 
G4 or 7+ sensors, subjects spent 1.5% of time in 

hypoglycemia range (sensed glucose < 70 mg/dL). 

Russell et al. 2012 
[30] 

Mean glucose level of 158 mg/dL. Euglycemia for 

68% of the sudy duration. Eight hypoglycmemia 
events during 576 hours of closed loop control (0.7% 

of total time). 

Haidar et al. 2013 
[33] 

Mean glucose level of 140 mg/dL.  Maintained 
glucose levels within near euglycemia for 70.7% of 
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